Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Med Biol Eng Comput ; 61(7): 1619-1629, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2284848

ABSTRACT

Coronavirus has an impact on millions of lives and has been added to the important pandemics that continue to affect with its variants. Since it is transmitted through the respiratory tract, it has had significant effects on public health and social relations. Isolating people who are COVID positive can minimize the transmission, therefore several exams are proposed to detect the virus such as reverse transcription-polymerase chain reaction (RT-PCR), chest X-Ray, and computed tomography (CT). However, these methods suffer from either a low detection rate or high radiation dosage, along with being expensive. In this study, deep neural network-based model capable of detecting coronavirus from only coughing sound, which is fast, remotely operable and has no harmful side effects, has been proposed. The proposed multi-branch model takes M el Frequency Cepstral Coefficients (MFCC), S pectrogram, and C hromagram as inputs and is abbreviated as MSCCov19Net. The system is trained on publicly available crowdsourced datasets, and tested on two unseen (used only for testing) clinical and non-clinical datasets. Experimental outcomes represent that the proposed system outperforms the 6 popular deep learning architectures on four datasets by representing a better generalization ability. The proposed system has reached an accuracy of 61.5 % in Virufy and 90.4 % in NoCoCoDa for unseen test datasets.


Subject(s)
COVID-19 , Deep Learning , Humans , COVID-19/diagnosis , SARS-CoV-2 , Cough/diagnosis , Lung
2.
J Biomech ; 137: 111098, 2022 05.
Article in English | MEDLINE | ID: covidwho-1796563

ABSTRACT

COVID-19 is a multisystem infectious disease affecting the body systems. Its neurologic complications include -but are not limited to headache, loss of smell, encephalitis, and cerebrovascular accidents. Even though gait analysis is an objective measure of the neuro-motor system and may provide significant information about the pathophysiology of specific diseases, no studies have investigated the gait characteristics in adults after full recovery from COVID-19. This was a cross-sectional, controlled study that included 12 individuals (mean age, 23.0 ± 4.1 years) with mild-to-moderate COVID-19 history (COVD) and 20 sedentary controls (CONT; mean age, 24.0 ± 3.6 years). Gait was evaluated using inertial sensors on a motorized treadmill. Spatial-temporal gait parameters and gait symmetry were calculated by using at least 512 consecutive steps for each participant. The effect-size analyses were utilized to interpret the impact of the results. Spatial-temporal gait characteristics were comparable between the two groups. The COVD group showed more asymmetrical gait patterns than the CONT group in the double support duration symmetry (p = 0.042), single support duration symmetry (p = 0.006), loading response duration symmetry (p = 0.042), and pre-swing duration symmetry (p = 0.018). The effect size analyses of the differences showed large effects (d = 0.68-0.831). Individuals with a history of mild-to-moderate COVID-19 showed more asymmetrical gait patterns than individuals without a disease history. Regardless of its severity, the multifaceted long-term effects of COVID-19 need to be examined and the scope of clinical follow-up should be detailed.


Subject(s)
COVID-19 , Gait Disorders, Neurologic , Stroke Rehabilitation , Adolescent , Adult , Cross-Sectional Studies , Gait/physiology , Humans , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL